A Mechanism for Duke-of-York Mappings in Harmonic Serialism

Brandon Prickett bprickett@umass.edu brandon-prickett.com 29th Manchester Phonology Meeting

1. Introduction

- Recent work (Gleim 2019; Rasin 2019) has argued against Harmonic Serialism (HS; McCarthy 2000) because it can't capture feeding Duke-of-York mappings (Pullum 1975; also known as fed counterfeeding on focus, Baković 2011).
- Here I show that a novel family of constraints can provide HS with a way to overcome this limitation.

2. Duke-of-York Opacity

- Whenever three phonological processes (*A*, *B*, *C*) interact such that...
 - 1. Process A creates an environment for B to apply,
 - 2. B applies,
 - 3. And then C erases that environment later in the derivation...
- ...A feeding Duke-of-York mapping is created.
- McCarthy (2003) used a hypothetical variant of Hebrew ("Quasi-Hebrew") to illustrate these:
 - A. *Epenthesis*: /qarbi/ → qarəbi
 - B. **Spirantization**: qarəbi → qarəvi
 - C. Syncope: qarəvi → [qarvi]
- Analyses that use feeding Duke-of-York mappings have been argued for in Polish (Rubach 2003), Arapaho (Gleim 2019), and Palestinian Arabic (Rasin 2019).

3. Vanilla HS and Duke-of-York

- Vanilla versions of HS fail to capture Duke-of-York derivations because HS requires *harmonic improvement*.
 - Although see Lamont (2021) for a way of capturing Duke-of-York without violating this principle.
- That is, intermediate forms must be more harmonic than their predecessors, which prevents processes that reverse a change made earlier in the derivation:

	UR: /qarbi/	NOCODA	MAX	*V[-cont]V	IDENT(cont)	DEP			
Step 1	qarbi	W*		L		L			
	qabi		W*	*		L			
	🖙 qarəbi			*		*			
Step 2	qarəbi	NOCODA	MAX	*V[-cont]V	IDENT(cont)	DEP			
	qarəbi			W*	L				
	qarbi	W*	W*		L				
	🖙 qarəvi				*				
3	qarəvi	NOCODA	MAX	*V[-cont]V	IDENT(cont)	DEP			
tep	🍧 qarəvi								
S	⊗ qarvi	W*	W*						
Final SR: [qarəvi] 🗶									

4. Boomerang Constraints

- To allow HS to capture Duke-of-York mappings, I propose *boomerang constraints*, which motivate the insertion of temporary structures over the course of a derivation.
- Crucially, the temporary structures only exist in intermediate forms and are absent from both URs and SRs.

5. Capturing Duke-of-York

- Boomerang constraints allow HS to capture Duke-of-York, since the removal of temporary structures can violate harmonic improvement.
- This is shown in the tableaux below for the case of Quasi-Hebrew, with a boomerang constraint that motivates the insertion of temporary schwas (denoted as \hat{a}) after codas.

Step 1	UR: /qarbi/	BOOM(ə/Coda_)	MAX	*V[-cont]V	IDENT(cont)	DEP			
	qarbi	W*		L		L			
	qarəbi	W*		*		*			
	🖙 qarôbi			*		*			
Step 2	qarôbi	BOOM(ə/Coda_)	MAX	*V[-cont]V	IDENT(cont)	DEP			
	qarôbi			W*	L				
	qarbi	W*	W*		L				
	🖙 qarêvi				*				
Step 3	qarêvi	BOOM(ə/Coda_)	MAX	*V[-cont]V	IDENT(cont)	DEP			
	r qarôvi								
	qarvi	W*	W*						
Final SR: [qarvi] ✓									

6. Discussion

- Boomerang constraints allow Harmonic Serialism to capture feeding Duke-of-York interactions.
 - Thus, HS can represent languages like Arapaho (Gleim 2019) & Palestinian Arabic (Rasin 2019).
- Future work should pair a theory of learning with this and other frameworks that can capture Duke-of-York (e.g., Stratal OT; Kiparsky 2000), to see which best predict typology.