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Introduction
• Learning stress patterns was one of the earliest topics in computational phonology (e.g., 
Dresher and Kaye, 1990; Gupta and Touretzky, 1994).
• Stress patterns are interesting because they involve hidden structure

• i.e., learners must infer structure (e.g., feet) that isn’t present in a form’s overt surface representation

• Tesar and Smolensky (2000) developed a dataset of 124 stress patterns
• This has been used in previous work as a benchmark for models of phonological learning

• However, none of these patterns involve lexically conditioned patterns—a common feature in 
real-world languages

• Here we test a sequence-to-sequence neural network on the 124 languages in the dataset, as 
well as 6 novel, lexically conditioned patterns. We want to answer the following questions:
• Are explicit constraints, given to a model at the beginning of learning, necessary for success on the TS 

languages? 

• Given the ability to learn and represent lexically conditioned patterns, will a model generalize to novel 
data or just memorize mappings?
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Background
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Hidden Structure and Learning

• In phonological learning, we are typically not given the full structure of the data.

• Footing is a common example of hidden structure: overt [babába] is compatible with at least two 
full structures, each violating different constraints (e.g., Trochee and Iamb). 

• Given the overt forms of the language data, we have to infer hidden structures like feet, and 
typically this inference has to occur in parallel with learning the grammar.
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/bababa/ Trochee Iamb

(babá)ba -1 0

ba(bába) 0 -1



The Learning Task
• To test how well models of phonological learning can deal with hidden structure, Tesar and 
Smolensky (2000; henceforth TS) created a dataset of 124 stress patterns. 

• These patterns are a sample of the factorial typology of 12 constraints.
• The ranking of these constraints determines various aspects of each pattern, like whether feet are iambs 

or trochees by default and what edge of the word the feet are aligned to.

• Note that all 124 patterns contain no lexical conditioning—they’re meant to apply uniformly to all words.

• The training data for each pattern consists of 62 underlying representations, as well as the overt 
surface form that the pattern maps that UR to.
• URs are sequences of unstressed light and heavy syllables, overt SRs are the same sequence, with 

primary and secondary stress marked on the word.

• Tesar and Smolensky also provide constraint violations for all possible foot placements in each surface 
form, however we ignore those here since our neural network doesn’t explicitly use constraints or feet.

• Past work has judged models by what proportion of the 124 languages they’re able to get 100% 
accuracy on (i.e., all 62 URs map to the correct over surface form).
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Past Models
• TS introduced Robust Interpretive Parsing (RIP) to deal with hidden structure and Boersma and 
Pater (2008) tested RIP with a number of different constraint-based approaches on the TS dataset.
• Out of the models they tested, the most successful was a noisy, exponential version of Harmonic 

Grammar (Legendre et al. 1990) that was trained using the Gradual Learning Algorithm (GLA; Boersma 
1997, Jesney 2007).

• On average, the model succeeded on 89.95% of the patterns (after being run on all 124 of them 10 
times).

• Jarosz (2013) improved upon RIP with Expected Interpretive Parsing (EIP) and applied it to a 
number of constraint-based models as well.
• Her best result used a noisy Harmonic Grammar model with this new parsing strategy and was successful 

on 94.19% of the languages (again, after 10 repetitions per language).

• Jarosz (2015) later showed that even better performance could be achieved with Probabilistic 
Ranking Grammars, optimized using Batch Expectation Driven Learning (Jarosz 2015).
• This model was successful on the TS languages an average of 95.73% of the time, over 10 reps.
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Our Model
• Sequence-to-sequence neural networks were originally designed for 
machine translation (Sutskever et al., 2014), but are convenient for 
modelling phonological mappings.
• They’re made up of two connected recurrent neural networks: the encoder

which processes the input and the decoder which produces the output.

• Sequence-to-Sequence networks have been shown to have human-like 
learning/generalization (Prickett 2019; Kirov and Cotterell 2018; Prickett 
2021) when trained on phonological and morphological tasks. 

• The network represents the input sequence as a series of timesteps, 
each of which is a vector of features with real-numbered values.
• For the simulations here, input syllables had one feature, showing whether 

they were light (-1) or heavy (1).

• Output syllables had two features: one showed whether the syllable was 
stressed (1) or not (-1) and one showed whether that stress was primary (1) 
or secondary (-1).
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Methods and Results

8



The Original TS Dataset
• As a first test of our model, we ran it on the original 124 languages in the TS dataset.
• Training data for each language were the relevant 62 mappings from a sequence of light/heavy syllables 

to a sequence of syllables with primary/secondary/no stress.

• For example: /L L L/ → [L L1 L]

• No testing data was present for these runs, since the original TS dataset isn’t meant to measure a 
model’s ability to generalize to novel data.

• Hyperparameters:
• Learning rate: .0005

• Learning duration: 500 epochs (i.e., 500 full passes through the training data)

• Batch size: 1 (i.e., online learning)

• For a language to be considered successful, the model had to map all 62 inputs from training to 
outputs in which each feature has the correct sign (positive/negative).
• With both GRU and LSTM hidden layers, we found that the model succeeded on 98.39% (122/124) of 

the TS patterns.
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Limitations of the TS Data
• The 62 data points in each of the TS patterns are meant to represent word types, rather than 
tokens.
• Each type of word is meant to have the same kind and number of syllables underlyingly and map to the 

same stress pattern on the surface (e.g., banana and cabana in English are both /L L L/→ [0 1 0] 
mappings). 

• This is sufficient for testing all of the earlier constraint-based models, since the constraints are 
completely general—that is, they apply to any phonological sequence that violates them.

• However, neural networks have the ability to learn both general processes and exceptions to 
those processes.
• This allows our model to learn lexically conditioned patterns—a typologically common phenomenon 

that we’ll return to shortly.

• But it also means that it could have just memorized the 62 mappings in each pattern rather than 
learning anything generalizable.

10



Generalizing from the TS Patterns
• To overcome this limitation, we randomly produced versions of 
each of the 124 languages that have multiple tokens per type.
• That is, for each of the 62 kinds of mappings, our new language had 

multiple forms that mapped in the same way.

• We differentiated the different tokens by adding a set of 
features to each timestep that represented a unique lexical ID 
for that token.

• We trained the model with GRU layers in the same way as 
before and then tested it on data with lexical ID’s of 0:
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Tokens per Type Training Testing

3 86.29% 44.35%

6 98.39% 90.32%



Languages with Lexically Conditioned Stress
• So far, we’ve seen that the sequence-to-sequence neural network can succeed on the TS 
dataset—even if you only count languages that it was able to generalize from, it’s comparable to 
many past models that were tested on these patterns.

• However, our model is also able to do something that none of those models had the expressive 
power to accomplish: lexically conditioned patterns.
• That is, patterns in which individual datapoints are exceptions to a more general rule, or when arbitrary 

classes of words follow different rules.

• While methods for representing exceptionality in constraint-based frameworks exist (e.g., Pater 
2009; Nazarov 2018; Hughto et al. 2019), to our knowledge, none of these have been used to 
learn the TS languages.
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TS-Style Stress Window Patterns
• To demonstrate our model’s ability to learn lexically conditioned 
patterns and to see how it generalizes from such patterns, we 
adapted the 62 input forms from the TS dataset to create six novel 
languages.

• These languages all made use of stress windows, meaning they 
allowed stress to appear on any pair of contiguous syllables at the 
word edge, with the syllable that’s stressed in a specific word being 
lexically specified.

• We varied the languages along two dimensions:
• Which word edge the window appeared on (left or right)

• With what probability stress appeared on the first syllable in the window 
(.25, .5, .75)

• We again used lexical ID features to uniquely mark each form, 
however these were now crucial for the model to know whether a 
form stressed the first or second syllable in its window.
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Stress Window Results
• We ran the network on these stress window patterns for as many epochs as it took for it to 
achieve 100% accuracy on the training data.

• When using GRU layers in the model, we never saw it reliably converge on these languages, 
despite running it for 10,000 epochs on each one.
• We’re unsure as to why GRU layers struggled with stress windows, although it might be because of their 

bias against counting-based patterns (Weiss et al. 2018).

• However, with LSTM layers, the model converged reliably for every language. At the end of 
training, we gave it data with lexical ID’s of 0. Results below show pr(stressing 1st syllable in the 
window) for novel forms:
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In Training Left Edge of the Word Right Edge of the Word

.25 0.126 (.15) 0.251 (.22)

.5 0.294 (.22) 0.446 (.27)

.75 0.877 (.19) 0.668 (.26)



Discussion
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Future Work
• Making the TS dataset more realistic. The lexical IDs were a step in this direction, however one 
could take this in many different directions:
• Using phonemes as timesteps (rather than syllables)

• Having noise in training (meant to represent speech errors)

• Distribute word lengths more realistically (instead of allowing long words to be just as common as 
shorter ones)

• Comparing this model with a constraint-based approach that can express lexical patterns.
• Would those constraint-based approaches be able to generalize to novel data as reliably as the 

network?

• Would they behave similarly when generalizing from stress windows?

• Exploring the TS patterns more carefully to see which are and aren’t typologically attested.

• Comparing the network’s acquisition of stress patterns to human behavior in an artificial 
language learning study (e.g., Carpenter 2016).
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Conclusions
• Are explicit constraints, given to a model at the beginning of learning, necessary for success 
on the TS languages?
• No, we showed that a neural network without explicit constraints could succeed on 98.39% of the 

languages in the dataset, better than any past approach.

• Even when forced to generalize to novel data, the model succeeded on 90.32% of the patterns, 
comparable to past approaches.

• Given the ability to learn and represent lexically conditioned patterns, will a model generalize 
to novel data or just memorize mappings?
• We demonstrated that the neural network could learn and represent lexically conditioned stress 

window patterns.

• It also generalized the TS stress patterns to novel data (as mentioned above)...

• ...And generalized the window-based patterns in a way that was close to frequency matching (a 
behavior observed in humans; see, e.g., Ernestus and Baayen 2003).
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Appendix: Tesar and 
Smolensky (2000) Constraints
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• WSP: stress heavy syllables.
• FOOTNONFINAL: head syllables must not come foot 

final.
• IAMBIC: head syllables must come foot final.
• PARSE: Each syllables must be footed.
• FTBIN: feet must be one heavy syllable or two 

syllables of either weight.
• WORDFOOTLEFT: align feet with the left edge of the 

word.
• WORDFOOTRIGHT: align feet with the right edge of the 

word.

• MAINLEFT: align the head foot with the left edge of the 
word.

• MAINRIGHT: align the head foot with the right edge of 
the word.

• ALLFEETLEFT: align all feet with the left edge of the 
word.
ALLFEETRIGHT: align all feet with the right edge of the 
word.

• NONFINAL: the final syllable in a word must not be 
footed.



Appendix: Epochs to Convergence for 
Stress Window Patterns
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Condition: side-pr(stressing 1st syll) Mean SD

Left-0.25 211 94.3

Left-0.5 281 124.9

Left-0.75 191 53.4

Right-0.25 211 53.4

Right-0.5 211 70.0

Right-0.75 251 67.1


