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Talk in a Nutshell

● Formal Languages/Automata:
▸ Necessary and sufficient conditions on computable functions
▸ Provide target function classes for generalization/learning
▸ transparent, analytical guarantees independent of the machine

● Recurrent Neural Network/ finite-state connections
● What is the generalization capacity of RNN Encoder-Decoders?

Encoder-decoders and Subregular Reduplication

● Reduplication: variable-length subregular copy functions
● Vanilla Encoder-Decoders struggle to capture generalizable
reduplication, networks with attention reliably succeed

● Attention weights mirror subregular 2-way FST processing,
suggests they are approximating them
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RNN and regular languages
Language: Does string w belong to stringset (language) L
● Computed by different classes of grammars (acceptors)

How expressive are RNNs?
Turing complete infinite precision+time (Siegelmann, 2012)
⊆ counter languages LSTM/ReLU (Weiss et al., 2018)
Regular SRNN/GRU (Weiss et al., 2018)

asymptotic acceptance (Merrill, 2019)
Weighted FSA Linear 2nd Order RNN (Rabusseau et al., 2019)
Subregular LSTM problems (Avcu et al., 2017)

pic credit: Casey 1996 3
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RNN Encoder-Decoder and Transducers
● Function: Given string w, generate f(w) = v

= accepted pairs of input & output strings
▸ Computed by different classes of grammars (transducers)

● Recurrent encoder maps a sequence to v ∈ Rn, recurrent decoder
language model conditioned on v (Sutskever et al., 2014)

● How expressive are they?
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1-way FSTs for reduplication
2-way FSTs for reduplication

Brief typology of reduplication

● Reduplication is typologically common1

● Basic division: partial vs. total reduplication

(1) Partial reduplication = bounded copy
a. CV: guyon → gu∼guyon

‘to jest’→‘to jest repeatedly’ (Sundanese)
b. Foot: (gindal)ba → gindal∼gindalba

‘lizard sp.’ → ‘lizards’ (Yidin)
c. Syllable vam.se → vam∼vamse

‘hurry’ → ‘hurry (habitual)’ (Yaqui)

(2) Total reduplication = unbounded copy
a. wanita→wanita∼wanita

‘woman’→‘women’ (Indonesian)

1(Moravcsik, 1978; Rubino, 2013)
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1-way FSTs for reduplication
2-way FSTs for reduplication

Subregular computing of reduplication
● Why reduplication (Red)?

▸ inhabits subclasses of regular string-to-string functions
▸ computed by restricted types of Finite-State Transducers

1. 1-way FST: reads input once in one direction
∼ computes Rational functions

e.g., Sequential functions like partial Red
2. 2-way FST: reads multiple times, moves back and forth

∼ computes Regular functions
e.g., Concatenated-Sequential functions like partial & total Red

Regular2-way FST =

Rational1-way =

Sequential

C-Sequential

6



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Partial reduplication with 1-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ p a t ⋉

Output:

q0start q1

q2

q3

q4 q5
⋊:λ

t:t

p:p

a:a∼ta

a:a∼pa

Σ ∶ Σ

⋉:λ

7



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Partial reduplication with 1-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ p a t ⋉

Output:

q0start q1

q2

q3

q4 q5
⋊:λ

t:t

p:p

a:a∼ta

a:a∼pa

Σ ∶ Σ

⋉:λ

7



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Partial reduplication with 1-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ p a t ⋉

Output:

q0start q1

q2

q3

q4 q5

t:t

p:p

a:a∼ta

a:a∼pa

Σ ∶ Σ

⋉:λ⋊:λ

7



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Partial reduplication with 1-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ p a t ⋉

Output: p

q0start q1

q2

q3

q4 q5
⋊:λ

t:t a:a∼ta

a:a∼pa

Σ ∶ Σ

⋉:λ

p:p
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Partial reduplication with 1-way FSTs
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1-way FSTs for reduplication
2-way FSTs for reduplication

1-way FST Limitations

● How does a 1-way FST handle reduplication?
→ memorizes all possible reduplicants

● Many limitations:

1. State explosion:
▸ scaling problems as size of reduplicant and alphabet increases
▸ unwieldy machines (Roark and Sproat, 2007:54)

2. Limited expressivity:
▸ can do partial reduplication but not total reduplication
▸ No bound on how big the copies are

3. Segment alignment:
▸ Memorizes, doesn’t ‘copy’
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1-way FSTs for reduplication
2-way FSTs for reduplication

Partial reduplication with 2-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ c o p i e s ⋉

Output:

q0start q1 q2 q3

q4 q5 q6

⋊:λ:+1 C:C:+1 V:V:+1

C:C:-1

Σ ∶ λ ∶ −1
⋊:∼∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1
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Partial reduplication with 2-way FSTs

● Working example: pat→[pa∼pat]
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q0start q1 q2
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Partial reduplication with 2-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ p a t ⋉

Output: p a
∼

q0start q1 q2

q3 q4 q5

⋊:λ:+1 C:C:+1

V:V:-1

Σ ∶ λ ∶ −1

Σ ∶ Σ ∶ +1

⋉:λ:+1
⋊:∼∶ +1
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Partial reduplication with 2-way FSTs
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Partial reduplication with 2-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ p a t ⋉

Output: p a
∼ p a t

,
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1-way FSTs for reduplication
2-way FSTs for reduplication

Reduplication with 2-way FSTs

● How does 2-way FST handle reduplication?
→ look back at the input to generate copies

● Increased expressivity, removes limitations...

1. Compact:
▸ no state explosion

2. Expressive:
▸ can do partial and total reduplication

3. Segment alignment:
▸ Output segments are aligned with the ‘right’ input segments
▸ Formally, look at origin semantics of how input-output segments

align (Bojańczyk, 2014)
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1-way FSTs for reduplication
2-way FSTs for reduplication

Segment alignment with FSTs
● Origin information: origin of output symbols in the input
● 1-way FSTs remember what to repeat, they don’t actively copy

p a t

p a p a t

Input:

Output:

● But linguistic theory says “copy” like a 2-way FST!

p a t

p a p a t

Input:

Output:
11
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1-way FSTs for reduplication
2-way FSTs for reduplication

Learning Reduplication

Reduplication is provably learnable in polynomial time and data
(Chandlee et al., 2015; Dolatian and Heinz, 2018)

RNNs with segmental inputs cannot be trained as reduplication
acceptors (Gasser, 1993; Marcus et al., 1999)
● Recognizing reduplication requires the comparison of static
subsequences - difficult for an RNN to store

Encoder-Decoders learn reduplication with a fixed-size reduplicant in
a small toy language (Prickett et al., 2018)
● Generalizable to novel segments and sequences
● Generalization to novel lengths not tested, computable by 1-way
FST that uses featural representations
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Network Architectures

Recurrence

● Recurrence relation: The function relating hidden states in
the encoder and decoder RNNs - affects practical expressivity of
network

● Two types of recurrence tested:
▸ sRNN - tth state is a nonlinear function of the tth input and

state t − 1 (Elman, 1990)
▸ GRU - tth state is a linear function of three functions (gates) of

the tth input and state t − 1 (Cho et al., 2014)

● Saturating nonlinearities (tanh) - sRNNs and GRUs cannot
count with finite precision (Weiss et al., 2018)

● LSTM is supra-regular, we are testing necessary properties of
RNN and GRU, which are finite-state (Merrill, 2019)

13
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Network Architectures

Attention
● In standard ED, the
encoded representation is
the only link between the
encoder and decoder

● Global attention allows
the decoder to selectively
pull information from
hidden states of the
encoder (Bahdanau et al.,
2014)

● FLT Analog: 2-way FST
has full access to the input
by moving back and forth

14
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Network Architectures

Test data

● Input-output mappings generated with 2-way FSTs from RedTyp
database2

1. Initial-CV tasgati→ta∼tasgati
Fixed-size reduplicant

2. Initial two-syllable (C*VC*V) tasgati→tasga∼tasgati
Onset maximizing, fixed over vowels

3. Total tasgati→tasgati∼tasgati
Variably sized reduplicant

● 10,000 generated for each language, 70/30 train/test split
● Minimum string length 3 - maximum string length varied
● Alphabet of 10, 16, or 26 characters
● Boundary symbols (∼) are not present

2Dolatian and Heinz (2019); also available on GitHub
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Reduplication type
String length and alphabet

Experiment 1

● Interaction between reduplication type, recurrence, and attention
▸ Total and partial (two-syllable) reduplication
▸ sRNN and GRU with and without attention

● Max string length: 9
● 10 symbols alphabet

Attention should improve function generalization across reduplication
types and recurrence relations
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Reduplication type
String length and alphabet

Experiment 1
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Reduplication type
String length and alphabet

Experiment 2

● Effects of alphabet size and range of permitted string lengths
● CV reduplication only
● sRNN/GRU × attention/non-attention × 3 alphabet sizes × 7
length ranges

Network generalization while learning a general reduplication function
should be invariant to language composition
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Reduplication type
String length and alphabet

Experiment 2
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Reduplication type
String length and alphabet

Experiment 2
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Discussion

● Networks with global attention learn and generalize all types of
reduplication and seem robust to string length and alphabet size

● sRNNs without attention show slightly better generalization of
partial reduplication than total reduplication
▸ Confound with less attested reduplicant lengths or a bias

preferring the regular pattern?
● GRUs perform better than sRNNs across all conditions

▸ Without attention not robust to length/alphabet - likely learning
heuristics that capture most data rather than a general function

Networks that cannot see material in the input multiple times cannot
learn generalizable reduplication
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Attention and Origin Semantics

p a t

p a p a t

1-Way:

p a t

p a p a t

2-Way:
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Summary
1. Why use reduplication functions?

▸ properties define fine-grained subregular function classes
▸ Allows us to test the generalization capacity of neural nets

2. Expressivity of attention
▸ Attention is necessary and sufficient for robustly learning and

generalizing reduplication functions using Encoder-Decoders
3. FST approximations

▸ Non-attention networks are limited to a single input pass,
approximating 1-way FST

▸ Attention networks can read the input again during decoding,
approximating 2-way FST,

4. Attention weights and origin information
▸ Evidence for approximation comes from attention weights
▸ IO correspondence relations mirror origin semantics of 2-way FST

5. Next step: trying more copying and non-copying functions
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2-way FSTs for total reduplication

Guide to appendix

● Reduplication across FSTs and RNNs [25]
● Harmony Extensions [26]
● Finite-State Automata & Representation Learning [27]
● Learning Reduplication [28]
● Problems with 1-way FSTs for Total Reduplication [29]
● Total reduplication with 2-way FSTs [31]
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Reduplication across FSTs and RNNs

● 1-way and 2-way FSTs compute reduplicative functions differently
1-way 2-way

Strategy?
How does it reduplicate? Memorize Look back
Scaling?
Is there state explosion 3 / 7 ,
Expressive?
Can it do total reduplication? 7 / 3 ,
Alignment?
Does origin information match theory? 7 / 3 ,

● Strategy creates all additional properties
● Link to RNNs :

▸ attention-less EDs compute like 1-way FSTs!
▸ attention-based EDs compute like 2-way FSTs
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Next: Attention, 2-way, and Determinism
The subregular hierarchy is more subtle

Regular functions2-way DFT = 2-way fNFT =

Rational functions1-way fNFT =

Sequential1-way DFT =

C-Sequential

ISL OSL

C-OSL

● Does attention enable non-regularity? Non-determinism?
▸ What about w → w3, w → wwr, w → ww, ...

● Idea: Use Harmony processes (Heinz and Lai, 2013)
▸ harmony spans subregular hierarchy
▸ unattested non-regular harmony (ex. Majority Rules) 26
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Finite-State Automata & Representation
Learning

● An FSA induces a mapping φ ∶ Σ∗ → R
● The mapping φ is compositional
● The output fA(x) = φ(x), ω is linear in φ(x)

Pic credit: Guillaume Rabusseau
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Learning Reduplication

● Reduplication is provably learnable in polynomial time and data
(Chandlee et al., 2015; Dolatian and Heinz, 2018)

● RNNs with segmental inputs cannot be trained as reduplication
acceptors (Gasser, 1993; Marcus et al., 1999)
▸ Recognizing reduplication requires the comparison of static

subsequences - difficult for an RNN to store
● Encoder-Decoders learn reduplication with a fixed-size
reduplicant in a small toy language (Prickett et al., 2018)
▸ Generalizable to novel segments and sequences
▸ Generalization to novel lengths not tested, computable by 1-way

FST that uses featural representations
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Problems with 1-way FSTs for Total

● 1-way FSTs can do Partial Red inelegantly
● Total reduplication cannot be modeled at all.
● Why?

▸ copied portion has unbounded size
▸ 1-way FST can’t do that!
▸ needs an infinite # of states
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Problems with 1-way FSTs for Total

● Total reduplication cannot be modeled at all.
● Can you approximate?

▸ some finite-state approximations exist...3
▸ But: they impose un-linguistic restrictions (e.g. a finite bound on

word size,...) so don’t directly capture reduplication
● Give up on finite-state?

▸ MCFGs, HPSG, pushdown accepters with queues4
▸ But... those are recognizers not transducers

3Hulden (2009); Beesley and Karttunen (2003); Walther (2000)
4Albro (2005); Crysmann (2017); Savitch (1989)
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Total reduplication with 2-way FSTs
● Total reduplication copies an unbounded size

(3) wanita→wanita∼wanita ‘woman’→‘women’ (Indo.)

● This 2-way FST reads the input left to right (+1), goes back (-1),
and reads the input again (+1)

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1
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Total reduplication with 2-way FSTs
● Total reduplication copies an unbounded size

(4) wanita→wanita∼wanita ‘woman’→‘women’ (Indo.)

● This 2-way FST reads the input left to right (+1), goes back (-1),
and reads the input again (+1)

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1
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Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→?

Input: ⋊ b y e ⋉

Output:

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1
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Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output:

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1
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Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output:

q0start q1

q2 q3 q4

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1

⋊:λ:+1
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Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output: b

q0start q1

q2 q3 q4

⋊:λ:+1

⋉:∼∶ −1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1

Σ ∶ Σ ∶ +1
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Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output: b y

q0start q1

q2 q3 q4

⋊:λ:+1

⋉:∼∶ −1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1

Σ ∶ Σ ∶ +1
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Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output: b y e

q0start q1

q2 q3 q4

⋊:λ:+1

⋉:∼∶ −1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1

Σ ∶ Σ ∶ +1
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Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output: b y e ∼

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1

⋉:∼∶ −1
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Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output: b y e ∼

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1
Σ ∶ λ ∶ −1
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Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output: b y e ∼

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1
Σ ∶ λ ∶ −1
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Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output: b y e ∼

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1
Σ ∶ λ ∶ −1
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Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output: b y e ∼

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

Σ ∶ λ ∶ −1

Σ ∶ Σ ∶ +1

⋉:λ:+1⋊:λ ∶ +1
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Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output: b y e ∼

b

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1 ⋉:λ:+1

Σ ∶ Σ ∶ +1
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Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output: b y e ∼

b y

q0start q1

q2 q3 q4
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Σ ∶ Σ ∶ +1

⋉:∼∶ −1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1 ⋉:λ:+1
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Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output: b y e ∼

b y e

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1 ⋉:λ:+1
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Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output: b y e ∼

b y e

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1

32



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output: b y e ∼

b y e
,

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1
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