
Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

Probing RNN Encoder-Decoder
Generalization of

Subregular Functions
Using Reduplication

Max Nelson, Hossep Dolatian, Jonathan Rawski, Brandon Prickett

University of Massachusetts Amherst, Stony Brook University

January 5, 2020

1



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

Talk in a Nutshell

● Formal Languages/Automata:
▸ Necessary and sufficient conditions on computable functions
▸ Provide target function classes for generalization/learning
▸ transparent, analytical guarantees independent of the machine

● Recurrent Neural Network/ finite-state connections
● What is the generalization capacity of RNN Encoder-Decoders?

Encoder-decoders and Subregular Reduplication

● Reduplication: variable-length subregular copy functions
● Vanilla Encoder-Decoders struggle to capture generalizable
reduplication, networks with attention reliably succeed

● Attention weights mirror subregular 2-way FST processing,
suggests they are approximating them

2



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

RNN and regular languages
Language: Does string w belong to stringset (language) L
● Computed by different classes of grammars (acceptors)

How expressive are RNNs?
Turing complete infinite precision+time (Siegelmann, 2012)
⊆ counter languages LSTM/ReLU (Weiss et al., 2018)
Regular SRNN/GRU (Weiss et al., 2018)

asymptotic acceptance (Merrill, 2019)
Weighted FSA Linear 2nd Order RNN (Rabusseau et al., 2019)
Subregular LSTM problems (Avcu et al., 2017)

pic credit: Casey 1996 3



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

RNN Encoder-Decoder and Transducers
● Function: Given string w, generate f(w) = v

= accepted pairs of input & output strings
▸ Computed by different classes of grammars (transducers)

● Recurrent encoder maps a sequence to v ∈ Rn, recurrent decoder
language model conditioned on v (Sutskever et al., 2014)

● How expressive are they?

4



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Brief typology of reduplication

● Reduplication is typologically common1

● Basic division: partial vs. total reduplication

(1) Partial reduplication = bounded copy
a. CV: guyon → gu∼guyon

‘to jest’→‘to jest repeatedly’ (Sundanese)
b. Foot: (gindal)ba → gindal∼gindalba

‘lizard sp.’ → ‘lizards’ (Yidin)
c. Syllable vam.se → vam∼vamse

‘hurry’ → ‘hurry (habitual)’ (Yaqui)

(2) Total reduplication = unbounded copy
a. wanita→wanita∼wanita

‘woman’→‘women’ (Indonesian)

1(Moravcsik, 1978; Rubino, 2013)
5



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Subregular computing of reduplication
● Why reduplication (Red)?

▸ inhabits subclasses of regular string-to-string functions
▸ computed by restricted types of Finite-State Transducers

1. 1-way FST: reads input once in one direction
∼ computes Rational functions

e.g., Sequential functions like partial Red
2. 2-way FST: reads multiple times, moves back and forth

∼ computes Regular functions
e.g., Concatenated-Sequential functions like partial & total Red

Regular2-way FST =

Rational1-way =

Sequential

C-Sequential

6



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Partial reduplication with 1-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ p a t ⋉

Output:

q0start q1

q2

q3

q4 q5
⋊:λ

t:t

p:p

a:a∼ta

a:a∼pa

Σ ∶ Σ

⋉:λ

7



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Partial reduplication with 1-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ p a t ⋉

Output:

q0start q1

q2

q3

q4 q5
⋊:λ

t:t

p:p

a:a∼ta

a:a∼pa

Σ ∶ Σ

⋉:λ

7



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Partial reduplication with 1-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ p a t ⋉

Output:

q0start q1

q2

q3

q4 q5

t:t

p:p

a:a∼ta

a:a∼pa

Σ ∶ Σ

⋉:λ⋊:λ

7



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Partial reduplication with 1-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ p a t ⋉

Output: p

q0start q1

q2

q3

q4 q5
⋊:λ

t:t a:a∼ta

a:a∼pa

Σ ∶ Σ

⋉:λ

p:p

7



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Partial reduplication with 1-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ p a t ⋉

Output: p a∼pa

q0start q1

q2

q3

q4 q5
⋊:λ

t:t

p:p

a:a∼ta Σ ∶ Σ

⋉:λ

a:a∼pa

7



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Partial reduplication with 1-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ p a t ⋉

Output: p a∼pa t

q0start q1

q2

q3

q4 q5
⋊:λ

t:t

p:p

a:a∼ta

a:a∼pa

⋉:λ

Σ ∶ Σ

7



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Partial reduplication with 1-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ p a t ⋉

Output: p a∼pa t

q0start q1

q2

q3

q4 q5
⋊:λ

t:t

p:p

a:a∼ta

a:a∼pa

Σ ∶ Σ

⋉:λ

7



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Partial reduplication with 1-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ p a t ⋉

Output: p a∼pa t ,

q0start q1

q2

q3

q4 q5
⋊:λ

t:t

p:p

a:a∼ta

a:a∼pa

Σ ∶ Σ

⋉:λ

7



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

1-way FST Limitations

● How does a 1-way FST handle reduplication?
→ memorizes all possible reduplicants

● Many limitations:

1. State explosion:
▸ scaling problems as size of reduplicant and alphabet increases
▸ unwieldy machines (Roark and Sproat, 2007:54)

2. Limited expressivity:
▸ can do partial reduplication but not total reduplication
▸ No bound on how big the copies are

3. Segment alignment:
▸ Memorizes, doesn’t ‘copy’

8



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Partial reduplication with 2-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ c o p i e s ⋉

Output:

q0start q1 q2 q3

q4 q5 q6

⋊:λ:+1 C:C:+1 V:V:+1

C:C:-1

Σ ∶ λ ∶ −1
⋊:∼∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1

9



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Partial reduplication with 2-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ p a t ⋉

Output:

q0start q1 q2

q3 q4 q5

⋊:λ:+1 C:C:+1

V:V:-1

Σ ∶ λ ∶ −1
⋊:∼∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1

9



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Partial reduplication with 2-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ p a t ⋉

Output:

q0start q1 q2

q3 q4 q5

C:C:+1

V:V:-1

Σ ∶ λ ∶ −1
⋊:∼∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1

⋊:λ:+1

9



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Partial reduplication with 2-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ p a t ⋉

Output: p

q0start q1 q2

q3 q4 q5

⋊:λ:+1

V:V:-1

Σ ∶ λ ∶ −1
⋊:∼∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1

C:C:+1

9



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Partial reduplication with 2-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ p a t ⋉

Output: p a

q0start q1 q2

q3 q5 q6

⋊:λ:+1 C:C:+1

Σ ∶ λ ∶ −1
⋊:∼∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1

V:V:-1

9



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Partial reduplication with 2-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ p a t ⋉

Output: p a

q0start q1 q2

q3 q4 q5

⋊:λ:+1 C:C:+1

V:V:-1

⋊:∼∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1
Σ ∶ λ ∶ −1

9



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Partial reduplication with 2-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ p a t ⋉

Output: p a
∼

q0start q1 q2

q3 q4 q5

⋊:λ:+1 C:C:+1

V:V:-1

Σ ∶ λ ∶ −1

Σ ∶ Σ ∶ +1

⋉:λ:+1
⋊:∼∶ +1

9



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Partial reduplication with 2-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ p a t ⋉

Output: p a
∼ p

q0start q1 q2

q3 q4 q5

⋊:λ:+1 C:C:+1

V:V:-1

Σ ∶ λ ∶ −1
⋊:∼∶ +1

⋉:λ:+1

Σ ∶ Σ ∶ +1

9



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Partial reduplication with 2-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ p a t ⋉

Output: p a
∼ p a

q0start q1 q2

q3 q4 q5

⋊:λ:+1 C:C:+1

V:V:-1

Σ ∶ λ ∶ −1
⋊:∼∶ +1

⋉:λ:+1

Σ ∶ Σ ∶ +1

9



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Partial reduplication with 2-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ p a t ⋉

Output: p a
∼ p a t

q0start q1 q2

q3 q4 q5

⋊:λ:+1 C:C:+1

V:V:-1

Σ ∶ λ ∶ −1
⋊:∼∶ +1

⋉:λ:+1

Σ ∶ Σ ∶ +1

9



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Partial reduplication with 2-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ p a t ⋉

Output: p a
∼ p a t

q0start q1 q2

q3 q4 q5

⋊:λ:+1 C:C:+1

V:V:-1

Σ ∶ λ ∶ −1
⋊:∼∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1

9



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Partial reduplication with 2-way FSTs

● Working example: pat→[pa∼pat]
Input: ⋊ p a t ⋉

Output: p a
∼ p a t

,

q0start q1 q2

q3 q4 q5

⋊:λ:+1 C:C:+1

V:V:-1

Σ ∶ λ ∶ −1
⋊:∼∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1

9



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Reduplication with 2-way FSTs

● How does 2-way FST handle reduplication?
→ look back at the input to generate copies

● Increased expressivity, removes limitations...

1. Compact:
▸ no state explosion

2. Expressive:
▸ can do partial and total reduplication

3. Segment alignment:
▸ Output segments are aligned with the ‘right’ input segments
▸ Formally, look at origin semantics of how input-output segments

align (Bojańczyk, 2014)

10



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Segment alignment with FSTs
● Origin information: origin of output symbols in the input
● 1-way FSTs remember what to repeat, they don’t actively copy

p a t

p a p a t

Input:

Output:

● But linguistic theory says “copy” like a 2-way FST!

p a t

p a p a t

Input:

Output:
11



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

1-way FSTs for reduplication
2-way FSTs for reduplication

Learning Reduplication

Reduplication is provably learnable in polynomial time and data
(Chandlee et al., 2015; Dolatian and Heinz, 2018)

RNNs with segmental inputs cannot be trained as reduplication
acceptors (Gasser, 1993; Marcus et al., 1999)
● Recognizing reduplication requires the comparison of static
subsequences - difficult for an RNN to store

Encoder-Decoders learn reduplication with a fixed-size reduplicant in
a small toy language (Prickett et al., 2018)
● Generalizable to novel segments and sequences
● Generalization to novel lengths not tested, computable by 1-way
FST that uses featural representations

12



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

Network Architectures

Recurrence

● Recurrence relation: The function relating hidden states in
the encoder and decoder RNNs - affects practical expressivity of
network

● Two types of recurrence tested:
▸ sRNN - tth state is a nonlinear function of the tth input and

state t − 1 (Elman, 1990)
▸ GRU - tth state is a linear function of three functions (gates) of

the tth input and state t − 1 (Cho et al., 2014)

● Saturating nonlinearities (tanh) - sRNNs and GRUs cannot
count with finite precision (Weiss et al., 2018)

● LSTM is supra-regular, we are testing necessary properties of
RNN and GRU, which are finite-state (Merrill, 2019)

13



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

Network Architectures

Attention
● In standard ED, the
encoded representation is
the only link between the
encoder and decoder

● Global attention allows
the decoder to selectively
pull information from
hidden states of the
encoder (Bahdanau et al.,
2014)

● FLT Analog: 2-way FST
has full access to the input
by moving back and forth

14



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

Network Architectures

Test data

● Input-output mappings generated with 2-way FSTs from RedTyp
database2

1. Initial-CV tasgati→ta∼tasgati
Fixed-size reduplicant

2. Initial two-syllable (C*VC*V) tasgati→tasga∼tasgati
Onset maximizing, fixed over vowels

3. Total tasgati→tasgati∼tasgati
Variably sized reduplicant

● 10,000 generated for each language, 70/30 train/test split
● Minimum string length 3 - maximum string length varied
● Alphabet of 10, 16, or 26 characters
● Boundary symbols (∼) are not present

2Dolatian and Heinz (2019); also available on GitHub
15



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

Reduplication type
String length and alphabet

Experiment 1

● Interaction between reduplication type, recurrence, and attention
▸ Total and partial (two-syllable) reduplication
▸ sRNN and GRU with and without attention

● Max string length: 9
● 10 symbols alphabet

Attention should improve function generalization across reduplication
types and recurrence relations

16



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

Reduplication type
String length and alphabet

Experiment 1

17



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

Reduplication type
String length and alphabet

Experiment 2

● Effects of alphabet size and range of permitted string lengths
● CV reduplication only
● sRNN/GRU × attention/non-attention × 3 alphabet sizes × 7
length ranges

Network generalization while learning a general reduplication function
should be invariant to language composition

18



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

Reduplication type
String length and alphabet

Experiment 2

19



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

Reduplication type
String length and alphabet

Experiment 2

19



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

Discussion

● Networks with global attention learn and generalize all types of
reduplication and seem robust to string length and alphabet size

● sRNNs without attention show slightly better generalization of
partial reduplication than total reduplication
▸ Confound with less attested reduplicant lengths or a bias

preferring the regular pattern?
● GRUs perform better than sRNNs across all conditions

▸ Without attention not robust to length/alphabet - likely learning
heuristics that capture most data rather than a general function

Networks that cannot see material in the input multiple times cannot
learn generalizable reduplication

20



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

Attention and Origin Semantics

p a t

p a p a t

1-Way:

p a t

p a p a t

2-Way:

21



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

22



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

Summary
1. Why use reduplication functions?

▸ properties define fine-grained subregular function classes
▸ Allows us to test the generalization capacity of neural nets

2. Expressivity of attention
▸ Attention is necessary and sufficient for robustly learning and

generalizing reduplication functions using Encoder-Decoders
3. FST approximations

▸ Non-attention networks are limited to a single input pass,
approximating 1-way FST

▸ Attention networks can read the input again during decoding,
approximating 2-way FST,

4. Attention weights and origin information
▸ Evidence for approximation comes from attention weights
▸ IO correspondence relations mirror origin semantics of 2-way FST

5. Next step: trying more copying and non-copying functions

23



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

Albro, D. M. (2005). Studies in Computational Optimality Theory,
with Special Reference to the Phonological System of Malagasy.
Ph. D. thesis, University of California, Los Angeles, Los Angeles.

Avcu, E., C. Shibata, and J. Heinz (2017). Subregular complexity and
deep learning. In S. Dobnik and S. Lappin (Eds.), CLASP Papers
in Computational Linguistics: Proceedings of the Conference on
Logic and Machine Learning in Natural Language (LaML 2017),
Gothenburg, 12 –13 June, pp. 20–33.

Bahdanau, D., K. Cho, and Y. Bengio (2014). Neural machine
translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473.

Beesley, K. and L. Karttunen (2003). Finite-state morphology: Xerox
tools and techniques. Stanford, CA: CSLI Publications.

Bojańczyk, M. (2014). Transducers with origin information. In
J. Esparza, P. Fraigniaud, T. Husfeldt, and E. Koutsoupias (Eds.),
Automata, Languages, and Programming, Berlin, Heidelberg, pp.
26–37. Springer.

23



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

Chandlee, J., R. Eyraud, and J. Heinz (2015, July). Output strictly
local functions. In Proceedings of the 14th Meeting on the
Mathematics of Language (MoL 2015), Chicago, USA, pp. 112–125.

Cho, K., B. Van Merriënboer, D. Bahdanau, and Y. Bengio (2014).
On the properties of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiv:1409.1259.

Crysmann, B. (2017). Reduplication in a computational HPSG of
Hausa. Morphology 27(4), 527–561.

Dolatian, H. and J. Heinz (2018, September). Learning reduplication
with 2-way finite-state transducers. In O. Unold, W. Dyrka, , and
W. Wieczorek (Eds.), Proceedings of Machine Learning Research:
International Conference on Grammatical Inference, Volume 93 of
Proceedings of Machine Learning Research, Wroclaw, Poland, pp.
67–80.

Dolatian, H. and J. Heinz (2019). Redtyp: A database of
reduplication with computational models. In Proceedings of the
Society for Computation in Linguistics, Volume 2. Article 3.

23



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

Elman, J. L. (1990). Finding structure in time. Cognitive
science 14(2), 179–211.

Gasser, M. (1993). Learning words in time: Towards a modular
connectionist account of the acquisition of receptive morphology.
Indiana University, Department of Computer Science.

Heinz, J. and R. Lai (2013). Vowel harmony and subsequentiality. In
A. Kornai and M. Kuhlmann (Eds.), Proceedings of the 13th

Meeting on the Mathematics of Language (MoL 13), Sofia,
Bulgaria, pp. 52–63. Association for Computational Linguistics.

Hulden, M. (2009). Finite-state machine construction methods and
algorithms for phonology and morphology. Ph. D. thesis, The
University of Arizona, Tucson, AZ.

Marcus, G. F., S. Vijayan, S. B. Rao, and P. M. Vishton (1999). Rule
learning by seven-month-old infants. Science 283(5398), 77–80.

Merrill, W. (2019). Sequential neural networks as automata. In
Proceedings of the Deep Learning and Formal Languages workshop
at ACL 2019.

23



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

Moravcsik, E. (1978). Reduplicative constructions. In J. Greenberg
(Ed.), Universals of Human Language, Volume 1, pp. 297–334.
Stanford, California: Stanford University Press.

Prickett, B., A. Traylor, and J. Pater (2018). Seq2seq models with
dropout can learn generalizable reduplication. In Proceedings of the
Fifteenth Workshop on Computational Research in Phonetics,
Phonology, and Morphology, pp. 93–100.

Rabusseau, G., T. Li, and D. Precup (2019). Connecting weighted
automata and recurrent neural networks through spectral learning.
In AISTATS.

Roark, B. and R. Sproat (2007). Computational Approaches to
Morphology and Syntax. Oxford: Oxford University Press.

Rubino, C. (2013). Reduplication. Leipzig: Max Planck Institute for
Evolutionary Anthropology.

Savitch, W. J. (1989). A formal model for context-free languages
augmented with reduplication. Computational Linguistics 15(4),
250–261.

23



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Siegelmann, H. T. (2012). Neural networks and analog computation:
beyond the Turing limit. Springer Science & Business Media.

Sutskever, I., O. Vinyals, and Q. V. Le (2014). Sequence to sequence
learning with neural networks. CoRR abs/1409.3215.

Walther, M. (2000). Finite-state reduplication in one-level prosodic
morphology. In Proceedings of the 1st North American chapter of
the Association for Computational Linguistics conference, NAACL
2000, Seattle, Washington, pp. 296–302. Association for
Computational Linguistics.

Weiss, G., Y. Goldberg, and E. Yahav (2018). On the practical
computational power of finite precision rnns for language
recognition. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short
Papers), pp. 740–745.

24



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Guide to appendix

● Reduplication across FSTs and RNNs [25]
● Harmony Extensions [26]
● Finite-State Automata & Representation Learning [27]
● Learning Reduplication [28]
● Problems with 1-way FSTs for Total Reduplication [29]
● Total reduplication with 2-way FSTs [31]

24



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Reduplication across FSTs and RNNs

● 1-way and 2-way FSTs compute reduplicative functions differently
1-way 2-way

Strategy?
How does it reduplicate? Memorize Look back
Scaling?
Is there state explosion 3 / 7 ,
Expressive?
Can it do total reduplication? 7 / 3 ,
Alignment?
Does origin information match theory? 7 / 3 ,

● Strategy creates all additional properties
● Link to RNNs :

▸ attention-less EDs compute like 1-way FSTs!
▸ attention-based EDs compute like 2-way FSTs

25



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Next: Attention, 2-way, and Determinism
The subregular hierarchy is more subtle

Regular functions2-way DFT = 2-way fNFT =

Rational functions1-way fNFT =

Sequential1-way DFT =

C-Sequential

ISL OSL

C-OSL

● Does attention enable non-regularity? Non-determinism?
▸ What about w → w3, w → wwr, w → ww, ...

● Idea: Use Harmony processes (Heinz and Lai, 2013)
▸ harmony spans subregular hierarchy
▸ unattested non-regular harmony (ex. Majority Rules) 26



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Finite-State Automata & Representation
Learning

● An FSA induces a mapping φ ∶ Σ∗ → R
● The mapping φ is compositional
● The output fA(x) = φ(x), ω is linear in φ(x)

Pic credit: Guillaume Rabusseau
27



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Learning Reduplication

● Reduplication is provably learnable in polynomial time and data
(Chandlee et al., 2015; Dolatian and Heinz, 2018)

● RNNs with segmental inputs cannot be trained as reduplication
acceptors (Gasser, 1993; Marcus et al., 1999)
▸ Recognizing reduplication requires the comparison of static

subsequences - difficult for an RNN to store
● Encoder-Decoders learn reduplication with a fixed-size
reduplicant in a small toy language (Prickett et al., 2018)
▸ Generalizable to novel segments and sequences
▸ Generalization to novel lengths not tested, computable by 1-way

FST that uses featural representations

28



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Problems with 1-way FSTs for Total

● 1-way FSTs can do Partial Red inelegantly
● Total reduplication cannot be modeled at all.
● Why?

▸ copied portion has unbounded size
▸ 1-way FST can’t do that!
▸ needs an infinite # of states

29



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Problems with 1-way FSTs for Total

● Total reduplication cannot be modeled at all.
● Can you approximate?

▸ some finite-state approximations exist...3
▸ But: they impose un-linguistic restrictions (e.g. a finite bound on

word size,...) so don’t directly capture reduplication
● Give up on finite-state?

▸ MCFGs, HPSG, pushdown accepters with queues4
▸ But... those are recognizers not transducers

3Hulden (2009); Beesley and Karttunen (2003); Walther (2000)
4Albro (2005); Crysmann (2017); Savitch (1989)

30



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Total reduplication with 2-way FSTs
● Total reduplication copies an unbounded size

(3) wanita→wanita∼wanita ‘woman’→‘women’ (Indo.)

● This 2-way FST reads the input left to right (+1), goes back (-1),
and reads the input again (+1)

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1

31



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Total reduplication with 2-way FSTs
● Total reduplication copies an unbounded size

(4) wanita→wanita∼wanita ‘woman’→‘women’ (Indo.)

● This 2-way FST reads the input left to right (+1), goes back (-1),
and reads the input again (+1)

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1

31



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→?

Input: ⋊ b y e ⋉

Output:

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1

32



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output:

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1

32



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output:

q0start q1

q2 q3 q4

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1

⋊:λ:+1

32



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output: b

q0start q1

q2 q3 q4

⋊:λ:+1

⋉:∼∶ −1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1

Σ ∶ Σ ∶ +1

32



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output: b y

q0start q1

q2 q3 q4

⋊:λ:+1

⋉:∼∶ −1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1

Σ ∶ Σ ∶ +1

32



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output: b y e

q0start q1

q2 q3 q4

⋊:λ:+1

⋉:∼∶ −1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1

Σ ∶ Σ ∶ +1

32



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output: b y e ∼

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1

⋉:∼∶ −1

32



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output: b y e ∼

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1
Σ ∶ λ ∶ −1

32



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output: b y e ∼

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1
Σ ∶ λ ∶ −1

32



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output: b y e ∼

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1
Σ ∶ λ ∶ −1

32



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output: b y e ∼

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

Σ ∶ λ ∶ −1

Σ ∶ Σ ∶ +1

⋉:λ:+1⋊:λ ∶ +1

32



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output: b y e ∼

b

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1 ⋉:λ:+1

Σ ∶ Σ ∶ +1

32



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output: b y e ∼

b y

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1 ⋉:λ:+1

Σ ∶ Σ ∶ +1

32



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output: b y e ∼

b y e

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1 ⋉:λ:+1

Σ ∶ Σ ∶ +1

32



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output: b y e ∼

b y e

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1

32



Introduction
Computational Properties of Reduplication

Methods
Results

Discussion
References

Appendix

2-way FSTs for total reduplication

Total reduplication with 2-way FSTs
● Indonesian example: wanita→wanita∼wanita
● Working example: bye→bye∼bye

Input: ⋊ b y e ⋉

Output: b y e ∼

b y e
,

q0start q1

q2 q3 q4

⋊:λ:+1

Σ ∶ Σ ∶ +1

⋉:∼∶ −1

Σ ∶ λ ∶ −1
⋊:λ ∶ +1

Σ ∶ Σ ∶ +1

⋉:λ:+1

32


	Introduction
	Computational Properties of Reduplication
	1-way FSTs for reduplication
	2-way FSTs for reduplication

	Methods
	Network Architectures

	Results
	Reduplication type
	String length and alphabet

	Discussion
	
	References
	Appendix
	2-way FSTs for total reduplication


