<u>Modeling the Acquisition of Phonological Interactions: Biases and Generalization</u> Brandon Prickett and Gaja Jarosz bprickett@umass.edu, jarosz@linguist.umass.edu AMP 2020, UC Santa Cruz

Introduction

- There has been extensive theoretical debate on modeling the full range of known phonological process interactions.
 - Here we focus on *bleeding* (*B*), *feeding* (*F*), *counterbleeding* (*CB*), and *counterfeeding (CF)* interactions.
- We build on recent experimental and computational work (Jarosz 2016, Prickett 2019) to provide novel evidence differentiating theories based on their predictions for learning and generalization.

Background

Two biases based on diachronic change (Kiparsky 1968, 1971):

 \blacktriangleright Maximal Utilization (MaxUtil): F, CB > B, CF \succ Transparency: B, F > CB, CF

- Jarosz (2016) showed that both biases are predicted by computational learning models and Prickett (2019) found that both affected different aspects of artificial language learning.
- Debates about opacity prominently contrast two dimensions:
- <u>Parallel</u> (e.g. McCarthy 1999) vs. <u>Serial</u> (e.g. Kiparsky 2000)
- Productive (e.g. Chomsky 1964) vs. <u>Exceptional</u> (e.g. Sanders 2003)
- We test predictions of four theories spanning these dimensions:

Stratal OT (Kiparsky 2000)

→ HS (McCarthy 2000) with SMR (Jarosz 2014)

Two-level constraints, e.g. *[s]/i/ (McCarthy 1996)

Indexed constraints (Pater 2010)

Artificial Languages

- Each of the four toy languages we used had two processes:
 - Palatalization Vowel Harmony
- $[s] \rightarrow [\int] / [+High]$ $[-Low] \rightarrow [\alpha High] / [\alpha High]C_$
- By manipulating the ordering of these processes, as well as the lexicon, we created a unique interaction type in each language:

	B	F		CB	CF
UR	/esi/	/ise/	UR	/esi/	/ise/
Harm.	ese	isi	Pal.	e∫i	_
Pal.	-	i∫i	Harm.	e∫ e	isi
SR	[ese]	[i∫i]	SR	[e∫e]	[isi]

Simulations

- We implemented the four theories of interest as with Expectation Driven Learning (Jarosz 2015).
 - trained online for 100 passes through the data.
 - https://github.com/gajajarosz/hidden-structure

		TEST			
	Faithful	Palatal.	Harm.	Interact.	Interact.
B	[ase], [ake]	/asi/ → [a∫i]	$/eki/ \rightarrow [eke]$	$/esi/ \rightarrow [ese]$	$/ise/ \rightarrow ?$
F	[ase], [ake]	$/asi/ \rightarrow [a \int i]$	$/eki/ \rightarrow [eke]$	/ise/ → [i∫i]	$/esi/ \rightarrow ?$
CB	[ase], [ake]	$/asi/ \rightarrow [a \int i]$	$/eki/ \rightarrow [eke]$	$/esi/ \rightarrow [e fe]$	$/ise/ \rightarrow ?$
CF	[ase], [ake]	/asi/ → [a∫i]	$/ek_{I}/ \rightarrow [ek_{E}]$	$/ise/ \rightarrow [isi]$	$/esi/ \rightarrow ?$

Palatalization:	/asi/	\rightarrow	[a∫i]	VS.	[asi]
Harmony: Ordering:	/eki/ /esi/	\rightarrow	[ese]	VS. VS.	[asi] [$e \int e$] (B/CB) or
	/1se/	\rightarrow	[1S1]	VS.	[1]1] (F/CF)

Predictions: Biases

- accuracy on two types of forms:
 - on F, CB languages than for B, CF languages on B, F languages than CF and CB.
- **Results:**

	Stratal	HS+SMR	2-Level Const.	Ind. Const.
Max. Util.	\checkmark	\checkmark	\checkmark	\checkmark
Transp.	\checkmark	\checkmark	X	X

- map interacting items is more consistent in transparent languages.
- The parallel models lack this asymmetry.

probabilistic pairwise ranking grammars and trained them

Learning rate was .05 for all simulations and each model was

Software (Jarosz, Anderson, Prickett, Lamont, & Nyman 2018):

• Training data for each language contained 20 words, each belonging to one of four categories. Testing data was always the kind of interacting forms that were absent in training:

^o Training data accuracy was assessed after each pass through the data using forced choice tasks (following Prickett 2019):

Predictions for test data were also collected after each pass.

• As in Prickett (2019), biases were defined using training data

MaxUtil: Accuracy on palatalization is higher for models trained

Transparency: Accuracy on ordering is higher for models trained

In the serial models, the evidence for rankings that correctly

➢ i.e. which processes are active at each stratum of the grammar for each training condition:

These grammars correctly capture the mappings present in the training data.

absent from training:

	B	F	CB	CF
UR	/ise/	/esi/	/ise/	/esi/
Stratum 1	i ∫i	ese	_	e∫i
Stratum 2	-	_	i ∫i	e∫ e
SR	[i∫i]	[ese]	[i∫i]	[e∫e]
Mapping Type	Transp.	Transp.	Transp.	Opaque

Each mapping can be classified as either transparent or opaque based on whether it's B/F or CB/CF, respectively (additionally, mappings can be faithful).

• We applied the same process to the other models:

	Stratal	HS+SMR	2-Lev. Const.	Ind. Const.		
B	Transp.	Transp.	Transp.	Transp.		
F	Transp.	Transp.	Opaque	Opaque		
CB	Transp.	Faithful	Transp.	Opaque		
CF	Opaque	Transp.	Opaque	Opaque		
This table shows the highest probability outcome						

predicted by each theory for each condition.

- longstanding debates.

Predictions: Generalization

• We also examined what each model predicted for the test data held out from training. For example, the following table summarizes what the Stratal model acquired for each language.

B	F	CB	CF
talize &	Palatalize &	Just	Just
monize	Harmonize	Palatalize	Palatalize
talize &	Palatalize &	Palatalize &	Just
monize	Harmonize	Harmonize	Harmonize

• The table below shows what mappings these grammars predict for the test data URs, which were

Conclusions

• Links between learning models and phonological theory yield novel predictions that can help resolve

Biases: predictions about relative learning rates Generalization: predictions for behavior on unseen data

• Here, predictions differentiate between all four theories.